Some of the more difficult Quiz 1 questions

- Indicate if the generic "SYSCALL" machine instruction is privileged (that is, a Kernel Mode Only Instruction).
 Not Privileged
- Indicate if the generic "TEST AND SET" machine instruction is privileged (that is, a Kernel Mode Only Instruction).
 Not Privileged
- 3. When a device raises an interrupt but is ignored, the device should try again according to its preprogrammed timeout interval.

False

4. Modern operating systems do not allow a device's interrupt handler to cause an exception.

True

CSE 451: Operating Systems Winter 2024

Module 8
Semaphores, Condition Variables, and Monitors

Gary Kimura

Semaphores

- Semaphore = a synchronization primitive
 - higher level of abstraction than locks
 - invented by Dijkstra in 1968, as part of the THE operating system
- A semaphore is:
 - a variable that is manipulated through two operations,
 P and V (Dutch for "wait" and "signal")
 - P(sem) (wait)
 - block until sem > 0, then subtract 1 from sem and proceed
 - V(sem) (signal)
 - add 1 to sem
- Do these operations atomically

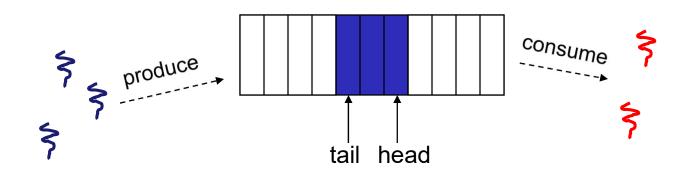
Blocking in semaphores

- Each semaphore has an associated queue of threads
 - when P (sem) is called by a thread,
 - if sem was "available" (>0), decrement sem and let thread continue
 - if sem was "unavailable" (0), place thread on associated queue; run some other thread
 - when V (sem) is called by a thread
 - if thread(s) are waiting on the associated queue, unblock one
 - place it on the ready queue
 - might as well let the "V-ing" thread continue execution
 - otherwise (when no threads are waiting on the sem), increment sem
 - the signal is "remembered" for next time P(sem) is called

Two types of semaphores

- Binary semaphore (aka mutex semaphore)
 - sem is initialized to 1
 - guarantees mutually exclusive access to resource (e.g., a critical section of code)
 - only one thread/process allowed entry at a time
 - Logically equivalent to a lock with blocking rather than spinning
- Counting semaphore
 - Allow up to N threads continue (we'll see why in a bit ...)
 - sem is initialized to N
 - N = number of units available
 - represents resources with many (identical) units available
 - allows threads to enter as long as more units are available

Binary semaphore usage


 From the programmer's perspective, P and V on a binary semaphore are just like Acquire and Release on a lock

```
P(sem)
:
do whatever stuff requires mutual exclusion; could conceivably be a lot of code
:
V(sem)
```

- same lack of programming language support for correct usage
- Important differences in the underlying implementation, however

Example: Bounded buffer problem

- AKA "producer/consumer" problem
 - there is a circular buffer in memory with N entries (slots)
 - producer threads insert entries into it (one at a time)
 - consumer threads remove entries from it (one at a time)
- Threads are concurrent
 - so, we must use synchronization constructs to control access to shared variables describing buffer state

Bounded buffer using semaphores (both binary and counting)

producer:

P(empty) ; block if no slots available P(mutex) ; get access to pointers

<add item to slot, adjust pointers>

V(mutex) ; done with pointers V(full) ; note one more full slot

consumer:

P(full); wait until there's a full slot

P(mutex) ; get access to pointers

<remove item from slot, adjust pointers>

V(mutex) ; done with pointers

V(empty); note there's an empty slot

<use the item>

Note:

I have elided all the code concerning which is the first full slot, which is the last full slot, etc.

Example: Readers/Writers

- Description:
 - A single object is shared among several threads/processes
 - Sometimes a thread just reads the object
 - Sometimes a thread updates (writes) the object
 - We can allow multiple readers at a time
 - why?
 - We can only allow one writer at a time
 - why?

Readers/Writers using semaphores

```
var mutex: semaphore = 1
                              ; controls access to readcount
   wrt: semaphore = 1
                              ; control entry for a writer or first reader
   readcount: integer = 0
                              ; number of active readers
writer:
                              ; any writers or readers?
          P(wrt)
                    <perform write operation>
          V(wrt)
                              ; allow others
reader:
          P(mutex)
                                             ; ensure exclusion
            readcount++
                                             ; one more reader
            if readcount == 1 then P(wrt)
                                             ; if we're the first, synch with writers
          V(mutex)
                    <perform read operation>
          P(mutex)
                                             : ensure exclusion
            readcount--
                                             ; one fewer reader
            if readcount == 0 then V(wrt)
                                             ; no more readers, allow a writer
```

V(mutex)

Readers/Writers notes

Notes:

- the first reader blocks on P(wrt) if there is a writer
 - any other readers will then block on P(mutex)
- if a waiting writer exists, the last reader to exit signals the waiting writer
 - can new readers get in while a writer is waiting?
 - so?
- when writer exits, if there is both a reader and writer waiting, which one goes next?

Semaphores vs. Spinlocks

- Threads that are blocked at the level of program logic (that is, by the semaphore P operation) are placed on queues, rather than busy-waiting
- Busy-waiting may be used for the "real" mutual exclusion required to implement P and V
 - but these are very short critical sections totally independent of program logic
 - and they are not implemented by the application programmer

Abstract implementation

- P/wait(sem)
 - acquire "real" mutual exclusion
 - if sem is "available" (>0), decrement sem; release "real" mutual exclusion; let thread continue
 - otherwise, place thread on associated queue; release "real"
 mutual exclusion; run some other thread
- V/signal(sem)
 - acquire "real" mutual exclusion
 - if thread(s) are waiting on the associated queue, unblock one (place it on the ready queue)
 - if no threads are on the queue, sem is incremented
 - » the signal is "remembered" for next time P(sem) is called
 - release "real" mutual exclusion
 - [the "V-ing" thread continues execution, or may be preempted]

Pressing questions

- How do you acquire "real" mutual exclusion?
- Why is this any better than using a spinlock (test-and-set) or disabling interrupts (assuming you're in the kernel) in lieu of a semaphore?
- What if someone issues an extra V?
- What if someone forgets to P before manipulating shared state?

Condition Variables

- Basic operations
 - Wait()
 - Wait until some thread does a signal and release the associated lock, as an atomic operation
 - Signal()
 - If any threads are waiting, wake up one
 - Cannot proceed until lock re-acquired
- Signal() is not remembered
 - A signal to a condition variable that has no threads waiting is a no-op
- Qualitative use guideline
 - You wait() when you can't proceed until some shared state changes
 - You signal() when shared state changes from "bad" to "good"

Bounded buffers with condition variables

var mutex: lock ; mutual exclusion to shared data

freeslot: condition ; there's a free slot fullslot: condition ; there's a full slot

```
producer:
    lock(mutex) ; get access to pointers
    if [no slots available] wait(freeslot);
        <add item to slot, adjust pointers>
        signal(fullslot);
        unlock(mutex)
```

```
consumer:

lock(mutex) ; get access to pointers

if [no slots have data] wait(fullslot);

<remove item from slot, adjust pointers>
signal(freeslot);
unlock(mutex);
<use the item>
```

Note 1:

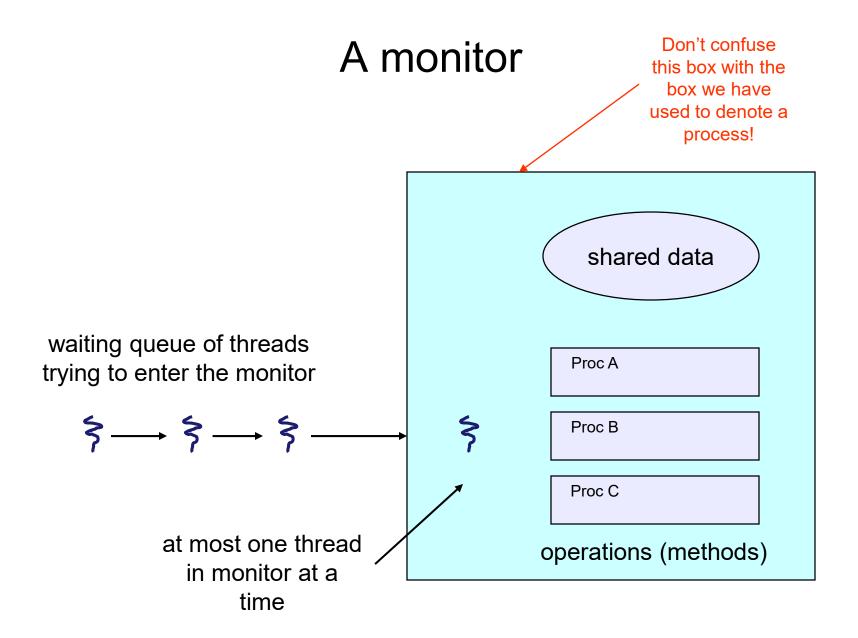
Do you see why wait() must release the associated lock?

Note 2:

How is the associated lock re-acquired?

[Let's think about the implementation of this inside the threads package]

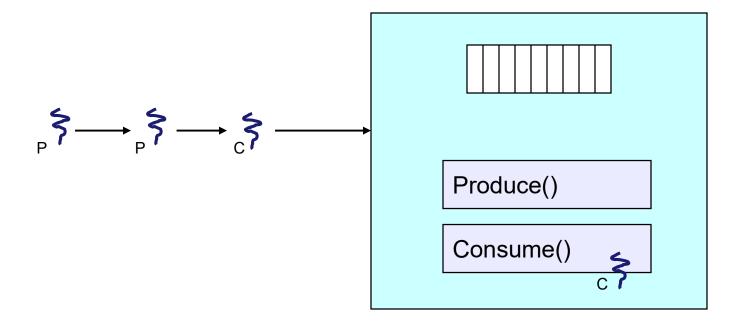
The possible bug


- Depending on the implementation ...
 - Between the time a thread is woken up by signal() and the time it re-acquires the lock, the condition it is waiting for may be false again
 - Waiting for a thread to put something in the buffer
 - A thread does, and signals
 - Now another thread comes along and consumes it
 - Then the "signalled" thread forges ahead ...
 - Solution
 - Not
 - if [no slots available] wait(fullslot)
 - Instead
 - While [no slots available] wait(fullslot)
 - Could the scheduler also solve this problem?

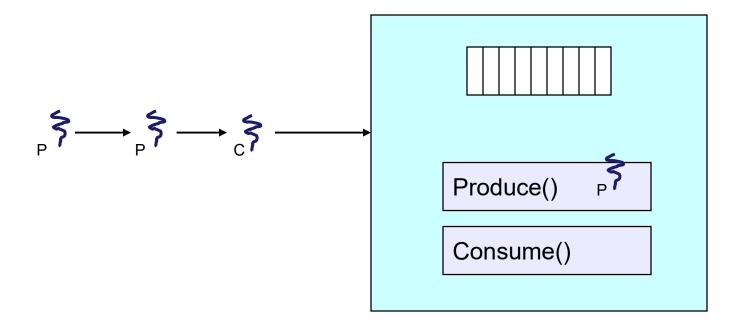
Problems with semaphores, locks, and condition variables

- They can be used to solve any of the traditional synchronization problems, but it's easy to make mistakes
 - they are essentially shared global variables
 - can be accessed from anywhere (bad software engineering)
 - there is no connection between the synchronization variable and the data being controlled by it
 - No control over their use, no guarantee of proper usage
 - Condition variables: will there ever be a signal?
 - Semaphores: will there ever be a V()?
 - Locks: did you lock when necessary? Unlock at the right time? At all?
- Thus, they are prone to bugs
 - We can reduce the chance of bugs by "stylizing" the use of synchronization
 - Language help is useful for this

One More Approach: Monitors


- A monitor is a programming language construct that supports controlled access to shared data
 - synchronization code is added by the compiler
 - why does this help?
- A monitor is (essentially) a class in which every method automatically acquires a lock on entry, and releases it on exit it combines:
 - shared data structures (object)
 - procedures that operate on the shared data (object methods)
 - synchronization between concurrent threads that invoke those procedures
- Data can only be accessed from within the monitor, using the provided procedures
 - protects the data from unstructured access
 - Prevents ambiguity about what the synchronization variable protects
- Addresses the key usability issues that arise with semaphores

Monitor facilities

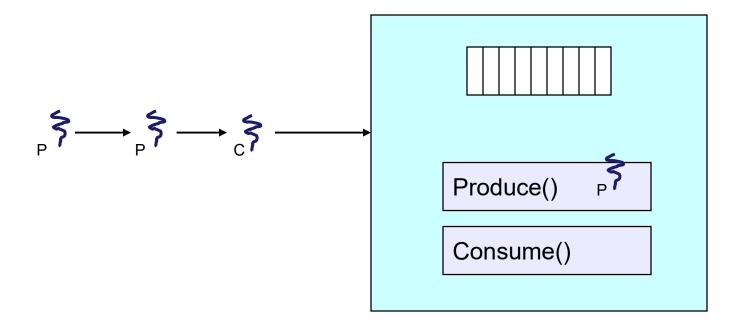

- "Automatic" mutual exclusion
 - only one thread can be executing inside at any time
 - thus, synchronization is implicitly associated with the monitor it "comes for free"
 - if a second thread tries to execute a monitor procedure, it blocks until the first has left the monitor
 - more restrictive than semaphores
 - but easier to use (most of the time)
- But, there's a problem...

Problem: Bounded Buffer Scenario

- Buffer is empty
- Now what?

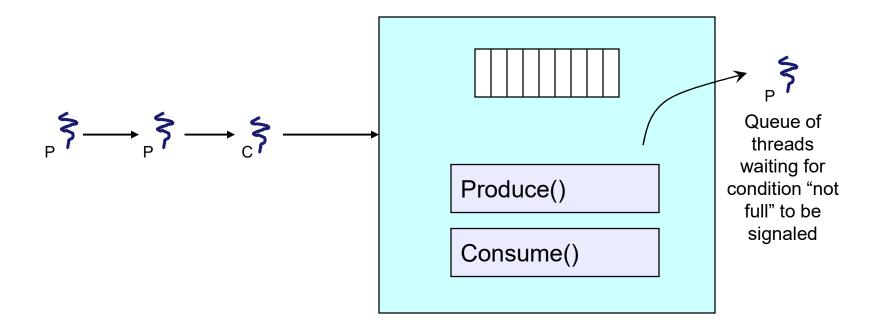
Problem: Bounded Buffer Scenario

- Buffer is full
- Now what?


Solution?

- Monitors require condition variables
- Operations on condition variables (just as before!)
 - wait(c)
 - release monitor lock, so somebody else can get in
 - wait for somebody else to signal condition
 - thus, condition variables have associated wait queues
 - signal(c)
 - wake up at most one waiting thread
 - "Hoare" monitor: wakeup immediately, signaller steps outside
 - if no waiting threads, signal is lost
 - this is different than semaphores: no history!
 - broadcast(c)
 - wake up all waiting threads

Bounded buffer using (Hoare) monitors


```
Monitor bounded buffer {
 buffer resources[N];
 condition not full, not empty;
produce(resource x) {
  if (array "resources" is full, determined maybe by a count)
      wait(not full);
  insert "x" in array "resources"
  signal(not empty);
consume(resource *x) {
  if (array "resources" is empty, determined maybe by a count)
       wait(not empty);
  *x = get resource from array "resources"
  signal(not full);
```

Problem: Bounded Buffer Scenario

- Buffer is full
- Now what?

Bounded Buffer Scenario with CV's

- Buffer is full
- Now what?

Runtime system calls for (Hoare) monitors

- EnterMonitor(m) {guarantee mutual exclusion}
- ExitMonitor(m) {hit the road, letting someone else run}
- Wait(c) {step out until condition satisfied}
- Signal(c) {if someone's waiting, step out and let him run}
- EnterMonitor and ExitMonitor are inserted automatically by the <u>compiler</u>.
- This guarantees mutual exclusion for code inside of the monitor.

Bounded buffer using (Hoare) monitors

```
Monitor bounded_buffer {
buffer resources[N];
condition not_full, not_empty;
procedure add_entry(resource x) {
                                                 ...... EnterMonitor(m)
  if (array "resources" is full, determined maybe by a count)
   wait(not full);
  insert "x" in array "resources"
  signal(not_empty);
                    ..... ExitMonitor(m)
procedure get_entry(resource *x) {
 if (array "resources" is empty, determined maybe by a count) EnterMonitor(m)
   wait(not_empty);
  *x = get resource from array "resources"
  signal(not_full);
                  ..... ExitMonitor(m)
```

There is a subtle issue with that code...

- Who runs when the signal() is done and there is a thread waiting on the condition variable?
- Hoare monitors: signal(c) means
 - run waiter immediately
 - signaller blocks immediately
 - condition guaranteed to hold when waiter runs
 - but, signaller must restore monitor invariants before signalling!
 - cannot leave a mess for the waiter, who will run immediately!
- Mesa monitors: signal(c) means
 - waiter is made ready, but the signaller continues
 - waiter runs when signaller leaves monitor (or waits)
 - signaller need not restore invariant until it leaves the monitor
 - being woken up is only a hint that something has changed
 - · signalled condition may no longer hold
 - must recheck conditional case

Hoare vs. Mesa Monitors

- Hoare monitors: if (notReady) wait(c)
- Mesa monitors: while (notReady) wait(c)
- Mesa monitors easier to use
 - more efficient
 - fewer context switches
 - directly supports broadcast
- Hoare monitors leave less to chance
 - when wake up, condition guaranteed to be what you expect

Runtime system calls for Hoare monitors

- EnterMonitor(m) {guarantee mutual exclusion}
 - if m occupied, insert caller into queue m
 - else mark as occupied, insert caller into ready queue
 - choose somebody to run
- ExitMonitor(m) {hit the road, letting someone else run}
 - if queue m is empty, then mark m as unoccupied
 - else move a thread from queue m to the ready queue
 - insert caller in ready queue
 - choose someone to run

- Wait(c) {step out until condition satisfied}
 - if queue m is empty, then mark m as unoccupied
 - else move a thread from queue m to the ready queue
 - put the caller on queue c
 - choose someone to run
- Signal(c) {if someone's waiting, step out and let him run}
 - if queue c is empty then put the caller on the ready queue
 - else move a thread from queue c to the ready queue, and put the caller into queue m
 - choose someone to run

Runtime system calls for Mesa monitors

- EnterMonitor(m) {guarantee mutual exclusion}
 ...
- ExitMonitor(m) {hit the road, letting someone else run}
- Wait(c) {step out until condition satisfied}
- Signal(c) {if someone's waiting, give him a shot after I'm done}
 - if queue c is occupied, move one thread from queue c to queue m
 - return to caller

- Broadcast(c) {food fight!}
 - move all threads on queue c onto queue m
 - return to caller

Readers and Writers

(stolen from Cornell ©)

```
Monitor ReadersNWriters {
 int WaitingWriters, WaitingReaders, NReaders, NWriters;
 Condition CanRead, CanWrite;
                                             Void BeginRead()
Void BeginWrite()
                                                  if(NWriters == 1 || WaitingWriters > 0)
    if(NWriters == 1 || NReaders > 0)
                                                     ++WaitingReaders;
        ++WaitingWriters;
                                                     Wait(CanRead);
       wait(CanWrite);
                                                         --WaitingReaders;
       --WaitingWriters;
                                                  ++NReaders:
    NWriters = 1;
                                                  Signal(CanRead);
 Void EndWrite()
                                               Void EndRead()
     NWriters = 0;
     if(WaitingReaders)
                                                  if(--NReaders == 0)
        Signal(CanRead);
                                                       Signal(CanWrite);
     else
        Signal(CanWrite);
```

Monitors and Java

- Java offers something a bit like monitors
 - It should be clear that they're not monitors in the full sense!
- Every Java object contains an intrinsic lock
- The synchronized keyword locks that lock
- Can be applied to methods, or blocks of statements

Synchronized methods

Atomic integer is a commonly provided (or built) package

```
public class atomicInt {
      int value;
      public atomicInt(int initVal) {
          value = initVal;
      public synchronized postIncrement() {
          return value++;
      public synchronized postDecrement() {
          return value--;
```

Monitor Summary

- Language supports monitors
- Compiler understands them
 - Compiler inserts calls to runtime routines for
 - monitor entry
 - monitor exit
 - Programmer inserts calls to runtime routines for
 - signal
 - wait
 - Language/object encapsulation ensures correctness
 - Sometimes! With conditions, you *still* need to think about synchronization
- Runtime system implements these routines
 - moves threads on and off queues
 - ensures mutual exclusion!

Basic Lock tools

- Spinlocks
- Semaphores (aka: sleep locks, mutex)
 - Binary and Counting
- Condition Variables (Monitors)
 - Hoare and Mesa

1/30/2024 40

Other approaches

We can optimize locks even further when there is significant lock contention

- MCS Locks
- RCU Locks

We can enrich the lock semantics

Reader/Writer (Shared/Exclusive) Locks